
Ion Beam Instability in Hall Thrusters 
 

IEPC-2013-71 

 

Presented at the 33rd International Electric Propulsion Conference, 
The George Washington University • Washington, D.C. • USA 

October 6 – 10, 2 
 

A. Kapulkin1 and E. Behar,2  

Asher Space Research Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel 

 

Y. Raitses3 

Princeton Plasma Physics Laboratory, Princeton University, Princeton, ND, 08543, USA 

 

 

Abstract: Stability of an ion flux, bounded with an anode and cathode, in Hall 
thrusters is investigated by theoretical and numerical modeling. Two-fluid MHD 
approximation with cold magnetized electrons and cold non-magnetized ions is used. 
The inertia of the electrons is taken into consideration. The perturbations are 
assumed to be quasineutral, potential, and dependent on a single spatial coordinate 
only. For simplicity, the magnetic field is assumed to be uniform. It is shown that the 
presence of the boundaries, where the potential of the ion beam is fixed, can cause 
instability of the beam. The growth rate of instability and excited oscillation 
frequency is of the order of the reciprocal of the time required for the ion to pass the 
distance between the anode and cathode. In the limit of a uniform state of the 
unperturbed ion flux, the instability is analogous to the Pierce instability of an 
electron beam with the fundamental distinction that here, the perturbations are 
quasineutral.  It is shown that the instability is alternately “aperiodical” and 
“oscillating” depending on the range of the αLH parameter, which includes induction 
of the magnetic field (through lower hybrid frequency), thickness of the acceleration 
layer, and velocity of the ion flux. The aperiodic instability is expected to occur in 
modern Hall thrusters. It should bring about change in distribution of the potential 
and plasma parameters in the acceleration layer. The oscillating instability is more 
inherent to the extended acceleration layer, typical for the models of the first 
generation. In its properties, it corresponds to the instability, which drives the so-
called transit-time oscillations that dominated the spectrum of the oscillations in the 
Hall thrusters of the first generation.  
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I. Introduction 

OWDAYS, Electric propulsion is successfully used in space missions and the scale of its applications 
grows steadily. Among the Electric propulsions, the Hall thruster is one of the most sought after. It 

possesses high efficiency and acceptable lifetime.     
 N

 
The further improvement of efficiency of the Hall thruster requires knowledge of physical processes in 

plasma of the thruster in fine detail. In the Hall thrusters, the plasma is far from equilibrium and is placed 
in a rather strong magnetic field. Both features create conditions for arising plasma instabilities. The 
instabilities, in turn, influence the performance of the thruster and its compatibility with the Electric 
propulsion subsystems and the electronic equipment of the spacecraft. Therefore, the instabilities in the 
Hall thrusters were and are the topic of a large body of research. The results of some of these studies are 
described in the review by Choueiri1. Nevertheless, in spite of more than four decades of instabilities 
investigations in Hall thrusters, their physics is still not fully understood. One of the main reasons for this, 
in our opinion, is that many theoretical models of the instabilities ignore the fact that real unstable 
perturbations in most cases are large scale and as a consequence need to take into account boundary 
conditions for the perturbations. The influence of the simplest boundary conditions for one-dimensional 
perturbations on the stability of the ion flux in the Hall thruster is the topic of the present paper.    

 
II. Theoretical Model of Ion Beam Instability 

 
At building a theoretical model, we use the two-fluid MHD approximation with cold magnetized 

electrons and cold non-magnetized ions. We restrict ourselves to quasineutral, potential perturbations and 
neglect dissipative and ionization processes. The perturbations are assumed to be dependent on a single 
spatial coordinate. We use Cartesian coordinates with the X and Z axes directed along the directions of the 
unperturbed ion velocity and the applied magnetic field, respectively. For simplicity, the unperturbed 
velocity V0, density n0 of the ions, and magnetic field are assumed to be uniform. Under these 
assumptions, linearized MHD equations take the following form: 
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Where Φ – the perturbation of potential, 
           Vx – the projection of ion velocity on axis X, 
            n – the number density of ions (electrons), 
            e – the unit positive charge, 
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                ux, uy – the projections of electron drift velocity on axes X and Y respectively, 
              m – the electron mass, 
              B0 – the induction of magnetic field. 
 

In the Eqs. (II.1) – (II.5), the quantities without index “0” are the perturbations of corresponding 
parameters, while those with index “0” – non-perturbed parameters. 

 
The boundary conditions to the set of the equations (II.1) – (II.5) can be written as follow: 

Φ(0) = Φ(L) = 0;  n(0) = 0;  Vx(0) = 0,    (II.6) 

where L – the distance between the anode and cathode. 
We seek the solution of the set of Eqs. (II.1) – (II.5) in the form: 

ti
J extx  )(),( FF           (II.7) 

Where F is the vector of perturbed parameters, and vector Fj is its x part only. 

We assume also that 1
Be
 ,               (II.8) 

where 
m

eB
Be

0  - the electron cyclotron frequency. 

This assumption enables one to ignore the square of frequencies ratio in comparison with 1. As a result, 
we obtain after some transformations instead of the set (II.1) – (II.5) the following set of equations: 
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The set (II.9) – (II.11) is a set of the ordinary differential equations with constant coefficients. At first, 
we assume that a wave length λ of the perturbation is small enough, such that one can neglect λ in 
comparison with L. This means that we can neglect the effect of boundaries and use  in 

Eqs (II.9)-(II.11). 

ikx
jJ ex FF )(

Where Fj – the vector of Fourier component of perturbed parameters, 

2

k . 

As a result, we obtain the following dispersion equation: 
                            (II.12) BiBekV   2

0 )(

0'1 kVBiBe    

0'2 kVBiBe    

 

Where  
M

eB
Bi

0 . 

 
From the Eq. (II.12), it is evident that for short wave perturbations and under the above assumptions, the 

ion flux in the Hall thruster is stable (Im ω = 0). 
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Now, we pass on to the case of λ ~ L. We need to solve the boundary eigenvalue problem (II.9) - (II.11) 
with (II.6). It can be done in the following manner. The general solution of the set (II.9)-(II.11) is found in 
the ordinary way. Then, using the boundary conditions (II.6), we obtain a set of algebraic equations for 
determination of arbitrary constants. Equating to zero a determinant of this set, one can derive a dispersion 
equation.  

 
The set (II.9) – (II.11) together with the boundary conditions (II.6) corresponds formally to the set of 

equations and boundary conditions describing the so-called Pierce instability2 (See also the book of 
Mikhailovskii3) of the compensated electron beam, moving in a gap between a cathode and anode but with 
three distinctions: 

 
1) in the equations of motion and continuity instead of the charge, mass, and velocity of the electron, 

a charge, mass, and velocity of the ion appeared;  

2) in the equation (II.11), the coefficient in the second term is 
0

2

en

m Be , not 
0

e ;  

3) not only the unperturbed state, but also the perturbations of the plasma are quasineutral.  
 

The Pierce instability is well studied. Taking into account the noted above analogy between the 
instability of the ion flux in the Hall thrusters and the classical Pierce instability, we can write a dispersion 
equation for the instability arising in the plasma of the thruster without performing rather cumbersome 
transformations. We start from the dispersion equation of the classical Pierce instability.  It takes the 
following form3: 
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                         0  - the dielectric constant of vacuum. 

Pierce showed that if α meets the condition  

 NN 2)12(  ,           (II.15) 

where N = 1,2,3…;  
from the dispersion equation, an aperiodic instability of the electron beam follows with a maximum growth  

rate of 
L

Ve 0 .  

Later, Pierce’s results were supplemented by different authors (See a review in the book of Nezlin4). It 
was found that the dispersion equation admits also an oscillatory instability. Those ranges of variations of α 
in which the oscillatory instability dominates are complementary with respect to the aperiodic instability. 
They meet the condition 

 )12(2  NN               (II.16) 

N = 1,2,3… 

In our case of the ion beam instability instead of the dispersion equation (II.13) and conditions (II.15) 
and (II.16) we should write 
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The growth rate of the instability is  
L

V0 .  

Since in our case, as distinct from the Pierce instability, the perturbations of the plasma are quasineutral, 
a principal question appears: how in the one-dimensional, collisionless problem the approximate 
compensation of the ion perturbations by electrons is provided in spite of a magnetic field, transverse to the 
direction of ion motion? The answer is as follows. As the electrical field in the oscillation or at the 
aperiodic growth of the perturbation changes, the velocity of the electrical drift of the electrons in the 
azimuthal direction changes as well. As a consequence of the finite mass of the electrons, the inertia force 
appears. The force causes the so-called inertia drift of the electrons. The drift is directed transverse to both 
the magnetic field and the direction of the inertia force, that is, in the X- direction. This drift provides the 
quasineutrality of the perturbations.        

The features of the instability will be considered in more detail in Sec. III. 
 

III. Numerical Modeling of Ion Beam Instability 
 

The results, obtained in the previous section, concern solving the simplest problem: the ion beam 
propagates with the constant velocity V0 across the magnetic field, between the anode and cathode. Here, 
we consider a more realistic problem. We research the stability of the ion flux where the ions in the 
unperturbed state are accelerated by the constant electrical field, applied between the anode and cathode of 
the Hall thruster. As before, the magnetic field is assumed to be uniform. Then, instead of the linearized 
MHD equations for the ion component (II.1-II.2), we should write 
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            V00 – the unperturbed velocity of ions at x=0, 

             - the unperturbed density of ions at x=0. 00n

As a consequence of the non-uniformity of , the continuity equation of the electron flux (II.5) should 
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Solving the set of equations (III.1)-(III.2), (II.3)-(II.4), (III.5), while taking into account Eqs (III.3)-
(III.4) and inequality (II.8), we seek the solution as before in the form of (II.7). As a result, after 
transformations and introducing dimensionless quantities, we obtain a new set of equations: 
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     (Hereafter, we can consider L as thickness of an acceleration layer.)  

The boundary eigenvalue problem (III.6-III.9) is solved numerically using the shooting method 
combined with so-called global-converging Newton-Ralphson iteration procedure. 

Calculations were carried out for a sufficiently large region of 
lh  values (from 0.7π to 3π) and for two 

values of q: q = 0 and q = 0.96. It is necessary to emphasize that for both values of q the energy of the 
unperturbed ions at x = L was the same. 
Numerical calculations for q = 0, for which an analytical solution is available, were carried out to compare 
the results for q = 0 and q = 0.96 at the same accuracy of calculations. 
 

Table 1. 


 LH  1r  (q=0) 

1  (q=0) 1r (q=0.96) 
1 (q=0.96) 

0.715 - - 0 0 
0.725 - - 0 0.017 
0.750 - - 0 0.059 
0.800 - - 0 0.139 
0.850 - - 0 0.206 
0.900 - - 0 0.259 
0.950 - - 0 0.299 
1.000 0 0 0 0.325 
1.050 0 0.120 0 0.336 
1.100 0 0.224 0 0.332 
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1.150 0 0.325 0 0.306 
1.200 0 0.414 0 0.253 
1.250 0 0.495 0 0.148 
1.275 0 0.532 0 0.048 
1.290 0 0.553 - - 
1.300 0 0.566 - - 
1.350 0 0.620 - - 
1.400 0 0.683 0.549 0.025 
1.450 0 0.729 0.626 0.068 
1.500 0 0.765 0.688 0.094 
1.550 0 0.792 0.732 0.107 
1.600 0 0.810 0.767 0.101 
1.650 0 0.817 0.783 0.067 
1.700 0 0.812 0.798 0.003 
1.750 0 0.790 - - 
1.800 0 0.758 - - 
1.850 0 0.705 0 0 
1.900 0 0.616 0 0.146 
1.950 0 0.473 0 0.262 
2.000 0 0 0 0.345 
2.050 0.571 0.095 0 0.405 
2.100 0.766 0.201 0 0.443 
2.150 0.926 0.292 0 0.466 
2.200 1.037 0.356 0 0.470 
2.250 1.131 0.426 0 0.462 
2.300 1.208 0.472 0 0.429 
2.350 1.278 0.518 0 0.368 
2.400 1.338 0.550 0 0.255 
2.450 1.385 0.575 0 0 
2.500 1.430 0.591 0.485 0 
2.550 1.466 0.591 0.630 0.087 
2.600 1.498 0.579 0.717 0.165 
2.650 1.526 0.553 0.775 0.216 
2.700 1.551 0.508 0.816 0.244 
2.750 1.572 0.442 0.842 0.252 
2.800 1.592 0.344 0.857 0.238 
2.850 1.630 0.198 0.861 0.199 
2.900 1.713 0 0.851  0.119 
2.950 - - 0.821 0 

 

The results of numerical modeling are presented in Table 1 and in Fig.1 – Fig.5. For the plots in Fig.1 - 

Fig.5, the free parameters )0( Re
1

1

x
  and )0( Im

1

1

x
  were chosen with the opposite signs to provide a 

better presentation of the results. 
 

 In Table 1, the frequencies and growth rates of the instabilities are given versus α lh/π. If the growth rate 
is less than zero in a given region, it is denoted with a sign “-“. From the data, presented in Table 1, it 
follows that in the real case of an acceleration of the unperturbed ions (similar to the case of the ions 
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moving with constant velocity) the instability is alternately “aperiodical” and “oscillating” depending on 
the range of α lh/π. At q = 0.96, the period of change between instability types is less than at q = 0. The 
threshold of the instability at q = 0.96 is lower as well. Both these features can be explained by the fact that 
at the same unperturbed velocity at x = L, the average velocity of the ions in the acceleration layer at q = 
0.96 is less than at V0 = const. The growth rates in the case of q = 0.96 are also less than they are at q = 0. 
Moreover, reducing the growth rate is stronger than reducing the average velocity. The latter is probably 
due to a degradation of a resonance condition at the acceleration of the ions. Nevertheless, even at q = 0.96, 
the growth rates of both aperiodical and oscillating instabilities remain quite high. At maximum, both 
growth rate and frequency of the excited oscillation are of the order of the reciprocal of the time needed for 
the ions to cross the acceleration layer.  
 

In Fig.1 – Fig.4, the spatial structures of the unstable perturbations (real and imaginary parts of Φ1) at q 
= 0.96 are shown for the different values of αLH/π. It can be seen that as αLH/π increases the spatial profile 
of the perturbation becomes more complex, namely the number of spatial oscillations increases. A 
comparison of two perturbation profiles related to the same type of the instability but with q = 0.96 and q = 
0 (at the nearest ranges of αLH/π) demonstrates the surprising similarity in appearance. Especially, this 
holds for the aperiodical instability (See Fig.5). 
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q = 0.96, ωr1 = 0, γ1 = 0.152 

 
Fig.1. Spatial profile of perturbation (αLH = 0.808) 
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q = 0.96, ωr1 = 0.732, γ1 = 0.107 

 
Fig.2. Spatial profile of perturbation (αLH = 1.55) 

 

 
 

 q = 0.96, ωr1 = 0, γ1 = 0.470 
 

Fig.3. Spatial profile of perturbation (αLH = 2.2) 
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q = 0.96, ωr1 = 0.842, γ1 = 0.252 

 
Fig.4. Spatial profile of perturbation (αLH = 2.75) 

 
 
 

 
 

     q = 0.96, ωr1 = 0, γ1 = 0.336; q = 0, ωr1 = 0, γ1 = 0.817 
 

Fig.5. Spatial profile of perturbation (αLH = 1.05, q = 0.96, αLH = 1.65, q = 0) 
 

 
The 33rd International Electric Propulsion Conference, The George Washington University, USA 

October 6 – 10, 2013 

10



To be more specific in the analysis of the results, we will consider two numerical samples: 
 

1. In the modern Hall thrusters, the optimal thickness of the acceleration layer is ~ 10-2 m for no too 
small diameters of the channel5. Then at B0 = 0.016 T and V0L = 1.85·104 m/s, we have αLH/π = 
0.808. In accordance with Table 1, this αLH/π value corresponds to the aperiodic instability with 

.152.0)96.0(1 q  The aperiodic instability should bring about a redistribution of the electric 

potential and the parameters of the plasma in the acceleration layer, which can be determined by 
solving a non-linear problem. At the distribution of the perturbed potential, which is shown in 
Fig.1, the initially uniform electrical field should transform to the field with the lower value at the 
beginning of the acceleration layer and higher value at the end of the layer. Thus, even in the 
uniform magnetic field (!), the instability of the ion beam can lead to a localization of the electric 
field predominantly near the exit of the acceleration channel. 

 
2. In the Hall thrusters of the first generation6, the thickness of the acceleration layer essentially 

exceeded that in the modern thrusters. This was due to a larger extension of the magnetic poles. 
Besides, the velocity of (Xe) ions was lower. Assuming L = 1.6·10-2m, V0L = 1.54·104m/s, and B0 
= 0.016 T, we have αLH/π(q = 0.96) = 1.55. At this value of αLH/π, the instability is oscillating 
with the following parameters γ1 = 0.107, ωr1 = 0.732 or Hz101.12

2
501 

L

V Lrf


 . The 

properties of oscillations following from the above given theoretical model of the instability:  
frequencies, threshold of exciting (including the fact that the oscillations are existed in the 
thrusters with the extended magnetic poles and are absent in the thrusters with the narrow poles), 
the absence of time shifts over the entire acceleration layer ( standing waves, see Fig.2) 
correspond to the features of the so-called transit-time perturbations7, which dominated the 
spectrum of oscillations in the first generation Hall thrusters. The models, suggested previously, 
for the instability, which is responsible for exciting the transit-time oscillations, are not 
convincing enough, because from all properties listed above, they can explain the frequencies of 
the oscillations only.       

 

IV. Conclusions 

The cause of the 

ility of an electron beam with the fundamental distinction that here, perturbations 

eld (through a lower hybrid 

 a change in 

ions, which dominated the spectrum of the oscillations in the Hall 
thrusters of the first generation.  

 

 

 

As a result of the presently conducted investigations: 
1. A theoretical model of ion beam instability in Hall thrusters was developed. 

instability is influence of boundaries with fixed electrical potentials on an ion flux. 
2. It was shown that in the limit of a uniform state of the unperturbed ion flux, the instability is analogous 

to the Pierce instab
are quasineutral.   

3. It was shown that the instability is alternately “aperiodical” and “oscillating” depending on the range 
of the αLH parameter, which includes induction of the magnetic fi
frequency), thickness of the acceleration layer, and velocity of the ions. 

4. The aperiodic instability should occur in the modern Hall thrusters. It should bring about
the distribution of the potential and the parameters of the plasma in the acceleration layer. 

5. The oscillating instability is more inherent to models with the extended acceleration layer, typical for 
the Hall thrusters of the first generation. In its properties, it corresponds to the instability, which drives 
the so-called transit-time oscillat
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